Aluminium oxide ALD graphene encapsulated photodetectors
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Summary Methodology

Graphene’s outstanding optoelectronic properties are Responsivity (R) was calculated from the photocurrent
ideal for advanced technologies, but its instability in am- Drain N Source (I,n) and the incident power (P):
bient conditions limits practical applications. By encap- 1 ALO; ‘
sulating graphene with aluminum oxide (Al,O3), we sig- d?) w | & o [on I 1)
nificantly enhance its long-term stability. Our field-effect S | p— & —p b
transistors demonstrate consistent performance for over =
a month and improved resilience to elevated tempera- o | where P is determined by measuring the light spot power

. . igure 1. Side view of an ALD encapsulated graphene field-effect sample with a : : : :
tures. This advancement paves the way for durable, high- doped silicon back gate [1]. The gold pads serve as source and drain terminals, and scaling it by the sample-to-spot area ratio, approxi-
performance photodetectors suitable for both ambient exposed by TMAH etching. Voltage is applied between the drain and source, with mately 0.19.

current monitored through the channel. Thicknesses of Au, and Ti are 55 nm and

and harsh environments. 5 nm, respectively. [2]
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Figure 2. (a) Transfer curves for Sample 2 in dark (blue) and under 455 nm illumination (orange), showing a leftward shift in the Charge Neutrality Point (CNP) due to photogating. (b) Difference between illuminated and dark curves, indicating minimal hysteresis.
(c) Photocurrent versus wavelength at a fixed power of 1.3 uW and gate voltage of -15 V. (d) Photocurrent over time under 455 nm illumination at varying powers, maintaining a gate voltage of -15 V. (e) Responsivity of Sample 2 across different wavelengths and
comparison with Samples 1-4 at 0.4 W and -15 V. (f) Photocurrent as a function of incident power for Sample 2, following a power-law fit with exponent v = 0.43. (g) Stability of Sample 9’s photoresponse over multiple days under consistent illumination and gate
voltage. (h) Comparison of Sample 9’s transfer curves before and after the stability test.

= Transfer curves for Sample 2 shift left under 455 nm = Photocurrent increases from 850 nm (no response) to = Responsivity Increases with decreasing wavelength:
illumination at 1.3 pVW, maintaining shape, indicating 365 nm (largest response). highest at 365 nm and lowest power.
photogating. = Photocurrent follows power-law [lon|oc PU#, indicating = Sample 6 achieves up to 4 A/W responsivity.

= Responsivity is ~3x higher in the hole regime (nega- dominant photogating effect [3]. = Sample 9 maintains stable photoresponse over 29 days
tive photocurrent) than in the electron regime (positive = Persistent photocurrent observed, suggesting deep with no >10% degradation; stable under temperatures
photocurrent). traps in SiO, contribute to photogating. up to 93.4 °C.

= Small hysteresis observed, suggesting enhanced gating
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